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The effect of a plane wall on the orbiting motion of a freely suspended prolate or
oblate spheroidal particle in simple shear flow is described by numerical simulation.
The particle translational and angular velocities are computed directly by solving
an integral equation of the second kind using a spectral boundary-element method
for Stokes flow. The presence of the wall modifies the Jeffery orbits executed by the
particle director, and causes the particle centre to perform a lateral and transverse
periodic motion deviating from the straight longitudinal path. The effect of the wall is
moderate for prolate particles and most significant for oblate particles. In the second
case, the complete orbiting motion is suppressed when the particle is sufficiently close
to the wall, and the particle director precesses around an axis that is tilted with respect
to the vorticity and direction of the simple shear flow, revealing that a neutrally stable
steady orientation is established when the particle is in contact with the wall.

1. Introduction
Increasing interest in biological and technological systems involving macromolecules

and slender particles in small-scale flows has underscored the significance of parti-
culate hydrodynamics in various contexts, including biomechanics, microfluidics, and
materials science. While a wealth of information is available on the motion, interac-
tion, and rheological implications of idealized spherical particles, analytical and
computational difficulties have prevented the extensive investigation of disk-like and
slender fibre-like particles.

The motion of prolate and oblate ellipsoidal particles suspended in an effectively
infinite linear flow at vanishing Reynolds number was described by Jeffery (1922). In
one application of the general theory, Jeffery demonstrated that a spheroidal particle
suspended in a simple shear flow executes a periodic orbiting motion whose precise
trajectory and frequency depend on the particle aspect ratio and initial inclination
quantified by the Jeffery constant. Much later, Hsu & Ganatos (1994) performed
numerical simulations based on a boundary-integral method to illustrate the effect of a
confining boundary idealized as a plane wall. In the numerical studies, freely suspended
spheroidal particles convected in simple shear flow, and heavy or light spheroidal
particles settling or rising in an otherwise quiescent fluid were considered. In both
cases, the particles were oriented such that the flow is left-to-right symmetric with
respect to the plane of the particle motion, so that the particle director orbits around
a complete circle; in the case of simple shear flow, the particle axis is normal to the
vorticity of the simple shear flow. The simulations demonstrated that prolate and
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oblate spheroids exhibit a periodic motion in which the particle centre periodically
moves away from and toward the wall but does not exhibit a net migration after a
complete cycle, as required by reversibility of Stokes flow. Similar calculations were
presented by Gavze & Shapiro (1997, 1998). Ellipsoidal particles exhibit a much more
complicated dynamics even in the absence of boundaries, including doubly periodic
and chaotic orbiting motion (Yarin, Gottlieb & Roisman 1997).

The goal of this paper is to describe the general motion of a freely suspended
spheroidal particle in simple shear flow near a plane wall, where the particle axis
is tilted by an arbitrary angle with respect to the vorticity of the unperturbed flow.
Numerical efficiency is achieved thanks to a problem formulation in terms of a double-
layer hydrodynamic potential of Stokes flow, leading to an integral equation of the
second kind whose solution can be found accurately and efficiently by the method of
successful substitutions combined with a spectral boundary-element expansion. This
approach differs from that of previous authors who combined the grand resistance
matrix with the condition of zero force and torque to indirectly deduce the particle
translational and angular velocity. The numerical results will demonstrate that a
confining wall may have a significant effect on the nature of the particle motion in
the inclined configuration.

2. Boundary integral formulation
We consider the motion of a rigid particle convected under the influence of a speci-

fied incident flow at vanishing Reynolds number. If the particle is neutrally buoyant
and the particle inertia negligibly small, the particle motion is quasi-steady and the
hydrodynamic force and torque exerted on the particle both vanish. Under these
circumstances, the velocity field can be expressed in terms of a double-layer Stokes-
flow potential as

uj (x0) = u∞
j (x0) +

∫∫
D

qi(x)Tijk(x, x0)nk(x) dS(x), (2.1)

where u∞ is the prescribed velocity field in absence of the particle, D is the particle
surface, n is the outward unit normal vector, q is the vectorial strength density of the
Stokes double-layer potential represented by the integral on the right-hand side of
(2.1), and Tijk(x, x0) is the Green’s function for the stress, known as the stresslet (e.g.
Pozrikidis 1992). In the case of flow in infinite space,

Tijk(x, x0) = −6
x̂i x̂j x̂k

|x̂|5 , (2.2)

where x̂ = x − x0. If the flow is bounded by a solid surface, SB , Tijk(x, x0) = 0 when
x0 lies on SB , so that the integral representation (2.1) satisfies the boundary condition
u(x0) = 0 when x0 lies on SB .

To compute the strength density of the double-layer potential, we let the field point
x0 approach the particle surface, D, and express the limit of the double-layer potential
in terms of the principal value, denoted by PV , finding

uj (x0) = u∞
j (x0) + 4πqj (x0) +

∫∫ PV

D

qi(x)Tijk(x, x0)nk(x) dS(x). (2.3)
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Next, we implement the rigid-body-motion boundary condition u = V + Ω × (x − xc),
where V is the velocity of translation of the particle centroid defined as

xc ≡ 1

S

∫∫
D

x dS, (2.4)

S is the particle surface area, and Ω is the angular velocity of rotation about the
particle centroid. Rearranging, we derive an integral equation of the second kind
for q,

qj (x0) = − 1

4π

∫∫ PV

D

qi(x)Tijk(x, x0)nk(x) dS(x)

+
1

4π

[
Vj + εjikΩi

(
x0k

− xck

)
− u∞

j (x0)
]
. (2.5)

To complete the boundary integral formulation, we stipulate that the translational and
rotational velocities derive from the strength density of the double-layer potential as

V = −4π

S

∫∫
D

q dS, Ω =

3∑
m=1

dmω(m), (2.6)

where

dm = − 4π

Am

ω(m) ·
∫∫

D

(x − xc) × q dS (2.7)

(Pozrikidis 1992, pp. 133–138). The three vectors, ω(m), are such that

v(m) =
1√
Am

ω(m) × (x − xc), (2.8)

for m =1, 2, 3, are three orthonormal modes of particle rigid-body rotation, that is,

(
v(l), v(m)

)
≡

∫∫
D

v(l) · v(m) dS = δlm, (2.9)

where δlm is Kronecker’s delta, and

Am =

∫∫
D

[
ω(m) × (x − xc)

]
·
[
ω(m) × (x − xc)

]
dS. (2.10)

In practice, the vectors ω(l) can be found by the Gram–Schmidt orthonormalization
process. For a spherical particle of radius a, the vectors ω(l) can be identified with the
unit vectors along three Cartesian axes, whereupon Am = 8

3
π a4 and

Ω = −3

2

(
4π

S

)2 ∫∫
D

(x − xc) × q dS. (2.11)

Finally, a deflating term is added to the right-hand side of (2.5) to yield the modified
integral equation

qj (x0) = − 1

4π

∫∫ PV

D

qi(x)Tijk(x, x0)nk(x) dS(x)

+
1

Snj (x0)

∫∫
D

q · n dS +
1

4π

[
Vj + εjikΩi

(
x0k

− xck

)
− u∞

j (x0)
]
. (2.12)

It can be shown that a solution of (2.12) also satisfies (2.5). More important, the defla-
ted integral equation (2.12) can be solved by the method of successive substitutions.
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↓ NE m → 1 2 3 4 5 Goldman et al. (1967)

(a) 8 V̂x 0.9404 0.9063 0.9249 0.9276 0.9250 0.9219
32 0.9348 0.9226 0.9231 0.9227 0.9229

8 Ω̂z 0.7978 0.9320 0.9389 0.9410 0.9422 0.9237
32 0.8424 0.9244 0.9250 0.9252 0.9250

(b) 8 V̂x 0.7834 0.6958 0.7275 0.7073 0.6669 0.6538
32 0.7837 0.6908 0.6664 0.6521 0.6533

128 0.7262 0.6680 0.6511

8 Ω̂z 0.9126 0.8621 0.8738 0.8039 0.8484 0.6746
32 0.7997 0.7560 0.6795 0.6622 0.6636

128 0.7715 0.7052 0.6681

Table 1. Reduced velocity of translation of the centre of a spherical particle, V̂x ≡ Vx/(kd), and

reduced angular velocity of rotation about the particle centre, Ω̂z ≡ −2Ωz/k, for discretization
into NE = 8, 32, and 128 elements defined, respectively, by NG = 18, 66, and 258 geometrical
global nodes. Results are shown for several polynomial element expansion orders, m, and for
sphere centre to wall separation (a) d/a = 1.5431, and (b) 1.0453.

The deflated integral equation was solved by a spectral-element method, wherein the
particle surface is discretized into an unstructured grid of six-node curved triangles,
all geometrical variables are approximated with quadratic functions in terms of
local triangle (barycentric) coordinates, ξ and η, and the density of the doubly-layer
potential, q, is approximated with a complete mth-degree polynomial in ξ and η over
each element. The associated cardinal interpolation functions are computed from the
Proriol orthogonal polynomials using the generalized Vandermonde matrix approach
(e.g. Pozrikidis 2005). Finally, point collocation is applied at Lobatto triangle nodes
(Blyth & Pozrikidis 2005), and the integral equation is solved by the method of
successive substitutions. The singular principal-value integral on the right-hand side
of (2.12) was computed by using an integral identity to write

∫∫ PV

D

qi(x)Tijk(x, x0)nk(x) dS(x),

=

∫∫
D

(qi(x) − qi(x0))Tijk(x, x0)nk(x) dS(x) − 4πqj (x0). (2.13)

The non-singular integral containing a mutli-valued integrand on the right-hand side
was evaluated by the 9-point Gaussian quadrature for the triangle.

To test the performance of the numerical method, computations were performed
for a spherical particle of radius a whose centre is located at a distance d above a
stationary plane wall positioned at y =w. The requisite Lorentz Green’s function is
available in terms of image singularities in closed form (Blake 1971; Pozrikidis 1992).
The freely suspended particle is convected under the influence of a simple shear flow
along the x-axis parallel to the wall, u∞

x = k(y−w), u∞
y = 0, u∞

z =0, where k is a specified
shear rate. Table 1 lists the computed reduced velocity of translation of the particle
centroid, V̂x ≡ Vx/(kd), and reduced angular velocity of rotation around the z-axis,
Ω̂z ≡ −2Ωz/k. As the particle is positioned farther above the wall, d/a → ∞, both V̂x

and Ω̂z tend to unity, corresponding to translation with the velocity of the shear flow
evaluated at the particle centroid, and rotation with an angular velocity that is equal
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Figure 1. (a) Illustration of the centreline of a spheroidal particle; (x, y, z) are global Cartesian
coordinates, and (x ′, y ′, z′) are instantaneous coordinates with origin at the particle centre.
(b) Discretization of the surface of a prolate spheroid with aspect ratio e = 4 into (i) 32 or
(ii) 128 elements, and of (iii) an oblate spheroid with aspect ratio e = 0.25 into 128 elements.
For clarity, each quadratic element has been subdivided into four flat sub-elements.

to half the vorticity of the infinite shear flow. Results in table 1 are presented for a
moderate particle centre to wall distance, d/a = 1.5431, and a smaller distance, 1.0453;
both lie outside the lubrication regime. In both cases, the boundary element solution
converges rapidly as the order of the polynomial expansion m is raised for a fixed
number of elements, NE , except for the crudest discretization where the numerical
integration error is dominant. The last column of table 1 lists values predicted by
Goldman Cox & Brenner (1967) using an analytical method. The numerical results
for d/a = 1.5431 are in good agreement with the theoretical predictions, whereas
those for d/a = 1.0453 show some differences due to discretization of the particle
shape. For the most accurate computations, the combined numerical error due to the
particle discretization, double-layer density discretization, and numerical integration
is less than 1.0%.

3. Orbiting motion of a spheroid
Our main objective is to describe the motion of a freely suspended spheroidal

particle in wall-bounded simple shear flow. The particle position at any instant is
determined by the coordinates of the particle centre, xc, and by the orientation of the
particle unit director pointing along the particle axis of revolution, d, as illustrated in
figure 1(a). The unit director is a free vector defined by the meridional angle, θ =Θ ,
and azimuthal angle, ϕ = Φ , as dx = cosΘ , dy = sin Θ cos Φ , and dz = sinΘ sin Φ . To
reconstruct the particle surface, we generate a spheroid of revolution along the x-axis
with centre at the origin, rotate it around the z-axis by the angle Θ , rotate it once
again around the x-axis by the angle Φ , and then translate it to the position xc.
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Figure 2. (a) Angular velocity of rotation of a spheroid with aspect ratio e = 4 in the
symmetric configuration, Φ = 0, computed with 32 elements and expansion orders m= 1,
2, and 3, represented by dotted, dashed, and dot-dashed lines, respectively. The solid line
describes Jeffery’s exact solution. (b) The computed Jeffery orbits marked as circles are in
excellent agreement with the analytical results drawn with solid lines threading the circles.

The particle centre translates according to the equation dxc/dt = V , and the director
angles evolve according to the equations dΘ/dt = Wθ and dΦ/dt =Wϕ/ sin Θ , where
W = Ω × d, and

Wθ = − sin ΘWx + cosΘ(cos ΦWy + sin ΦWz),

Wϕ = − sin ΦWy + cosΦWz.

}
(3.1)

The initial-value problem defined by these differential equations was integrated in
time using the second-order Runge–Kutta method with a constant time step, subject
to the initial conditions Θ = π/2 and Φ =Φ0, where Φ0 is a specified azimuthal angle.
In the most demanding simulations, each time step involving two velocity evaluations
requires approximately 10 or 35 s of CPU time on a 2.2 MHz personal computer
for a specified sixth-digit numerical threshold in the iterative solution of the integral
equation, respectively, for infinite and wall-bounded flow. Only a few iterations are
necessary when the initial guess for the solution is the converged solution at the
previous step.

Consider the motion of a prolate spheroid with long semi-axis a and short semi-axis
b, where e ≡ a/b > 1 is the particle aspect ratio. To establish a point of reference
and further validate the numerical method, we first discuss the motion of a spheroid
with aspect ratio e = 4 in infinite simple shear flow. Figure 2(a) shows a graph of the
angular velocity of rotation around the z-axis plotted against the particle inclination
angle, Θ , for the left-to-right symmetric configuration corresponding to Φ = 0. In
this computation, the particle surface was discretized into 32 quadratic elements,
as illustrated in figure 1(b)(i). The dotted, dashed, and dot-dashed lines correspond
respectively to element polynomial expansion orders m = 1, 2, and 3, and the solid
line represents Jeffery’s (1922) exact solution described by

Ωz =
dΘ

dt
= −k

2

(
1 − e2 − 1

e2 + 1
cos(2Θ)

)
. (3.2)

In spite of the small number of elements, the numerical results for m =2 and 3
are in excellent agreement with the analytical predictions. Jeffery’s formula shows
that a spheroid with an infinite aspect ratio, e = ∞, remains aligned with the flow in
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Figure 3. Director orbits of a prolate spheroid for particle-centre to wall distance (a)
d/a =1.25, and (b) 1.0. The circular symbols represent the results of the numerical simulations,
and the nearly coincident solid lines represent the Jeffery orbits for infinite flow.

the streamwise orientation, Θ = 0, and rotates with angular velocity Ωz = −k in the
transverse orientation, Θ = π/2. The rate of rotation of a prolate spheroid with finite
aspect ratio is small when Θ = 0 and highest when Θ = π/2.

The circular symbols in figure 2(b) trace the orbits of the inclined director computed
with 32 elements, element expansion order m =2, and time step k∆t =0.10. The
hardly visible solid lines threading the data represent Jeffery’s analytical predictions
described by dx = sin ξ cos χ , dy = sin ξ sin χ , and dz = cos ξ , where ξ is a meridional
angle defined with respect to the z′-axis, and χ is the azimuthal angle subtended
between the x ′-axis and the projection of the director in the x ′y ′-plane, as shown
in figure 1(a). The Jeffery orbits are described by tan2 ξ (e2 sin2 χ + cos2 χ) = J2,
where the orbital constant J varies between zero and infinity. When Θ = π/2, and
correspondingly also χ = π/2, the particle axis lies in the y ′z′-plane, ξ = π/2 − Φ and
J = e cotΦ . The excellent agreement between the numerical and the analytical results
demonstrates the accuracy of the numerical method.

Next, we consider the motion of the prolate spheroid in wall-bounded shear flow.
The circular orbit corresponding to Φ = 0 was considered by Hsu & Ganatos (1994)
for large and moderate particle-centre to wall separations, d/a > 2.2, where d is the
distance of the particle centre from the wall in the transverse orientation corresponding
to Θ = π/2. The present results for this configuration are in good agreement with data
read off the graphs of the previous authors, subject to the uncertainty imposed by
the narrow plotting window of the published figures. Hsu & Ganatos (1994) tabulate
truncated Fourier series approximations for the particle translational and angular
velocities in terms of the particle inclination angle, α = π − Θ , with an error on the
order of 4%. The present results agree with their expressions within this tolerance.

In the simulations presented in the remainder of this section, the particle surface was
discretized into 128 isoparametric elements supporting second-order expansions, m =
2, and the time step was set to k∆t =0.10. Figure 3 illustrates the effect of a plane wall
on the Jeffery orbits for particle to wall distance d/a = 1.25 and 1.0, as shown in figure
1(b)(ii). The circular symbols represent the results of the numerical simulations, and
the nearly coincident solid lines represent the Jeffery orbits for infinite flow. Because
of the reflection symmetry of the flow with respect to the particle centre, the director
orbits remain symmetric with respect to the y ′z′- and z′x ′-planes in the presence of
the wall. Surprisingly, the wall has only a moderate effect on the director orbits, even
when the particle is in close proximity and nearly touches the wall. However, the
motion of the particle centre is significantly affected by the presence of the wall.
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Figure 4. (a, b) Projection of particle centre trajectories in the xy- and zx-planes for d/a = 1.25,
and Φ0/π = 0 (dotted line), 0.125 (dashed line), 0.25 (solid line), 0.375 (thick solid line), and
0.46875 (bold solid line). (c, d) Particle centre trajectory in physical space and evolution of the
particle director for Φ0/π=0.25 and 0.375.

Figure 4(a, b) illustrates the projection of the particle centre trajectories in the xy-
and zx-planes for d/a = 1.25 and Φ0/π = 0 (dotted line), 0.125, 0.25, 0.375, and 0.46875
(bold solid line). The graphs in figure 4(a) show that the particle centre executes a
periodic motion toward and away from the wall depending on the orientation of the
long particle axis. As the initial inclination angle Φ0 tends to π/2, the long particle axis
tends to align with the vorticity of the simple shear flow, the amplitude of the periodic
motion is reduced, and the particle motion becomes steady. The graphs in figure 4(b)
reveal that a corresponding periodic motion occurs in the transverse direction along
the z-axis, except when the initial inclination angle Φ0 is exactly equal to 0 or π/2. The
nature of the three-dimensional motion is better illustrated in figure 4(c, d), showing
the particle center trajectory in physical space with the director visualized as a pin
whose sharp end is anchored at the particle centre.

Jeffery (1922) showed that the period of the particle motion in infinite simple shear
flow is T∞ = (2π/k) (e + 1/e), independent of the particle tilting angle with respect to
the vorticity of the incident shear flow. Figure 5 shows the evolution of the director
azimuthal angle, χ , plotted against the reduced time t ′ ≡ t/T∞, for particle aspect
ratio e = 4. Results are shown for d/a = 1.25 and Φ0/π = 0, 0.125, 0.25, and 0.375,
and for d/a = 1.0 and Φ0/π = 0.625, 0.125, 0.25, and 0.375. When d/a = 1.25, the
wall has only a mild effect on the particle motion for any tilting angle, Φ0. The
effect is small even when the tip of the spheroid is a quarter of the particle major
semi-axis away from the wall. At this moderate separation, the period of the motion
increases approximately by 10% for any director orbit, due to the wall. The effect
becomes more pronounced at the smaller separation d/a = 1.0, though even in that
case the Jeffery period is only 20% smaller than that occurring in the presence of the
wall.



Spheroid near a plane wall 113

0 0.5

t� t�

1.0
–0.5

0

0.5

1.0

1.5
(a) (b)

–0.5

0

0.5

1.0

1.5

0 0.5 1.0

–x
––
π

Figure 5. Evolution of the director azimuthal angle, χ , with respect to the normalized time
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Figure 6. (a) Director orbit of an oblate spheroid with aspect ratio e = 0.25 for initial tilting
angle Φ0 = 0.125 π in the absence of the wall (dotted line), and for initial particle centre to wall
separation d/b = 1.5, 1.25, 1.10, and 1.05. (b) Particle centre trajectory and evolution of the
particle director for d/b = 1.1 (square director head) and d/b = 1.0 (circular director head).
(c, d) Projection of the particle center trajectories in the xy- and zx-planes for Φ0 = 0.125 π
and d/a = 1.5, (solid lines), 1.25 (dotted lines), 1.1 (dashed lines), 1.05 (dot-dashed lines), and
1.0 (thick solid lines).

Next, we consider the motion of an oblate spheroid with aspect ratio e = 0.25. In
the left-to-right symmetric configuration corresponding to Φ = 0, the particle director
executes a complete circular orbit for any particle to wall separation. Figure 6(a)
illustrates the effect of the wall on the evolution of the director orbit for initial
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particle tilting angle Φ0 = 0.125 π. The most striking new feature is that, when the
particle is close enough to the wall, the complete rotational orbit is suppressed, and
the director precesses around an inclined axis. As the particle approaches the wall, a
neutrally stable configuration is established wherein the particle moves steadily with
its axis tilted by the angle Φ0 in the plane Θ = π/2, while the lower part of the
particle surface touches the wall. The transition from full orbital motion to precession
occurs at a critical separation, d/b � 1.055. At this critical value, the particle tends
to turns on its side so that the axis of revolution is aligned with the vorticity of the
simple shear flow, so that Θ = π/2 and Φ = π/2. However, the transverse orientation
is unstable and is not expected to occur in practice.

The nature of the motion is illustrated in figure 6(b), showing the particle centre
trajectory and simultaneous evolution of the particle director for d/b =1.0 and 1.1.
In the first case, the particle follows a spiral path, being shifted to the left or to the
right depending on the orientation of the director. In the second case, the particle
follows a mildly fluctuating wavy path, while the director is always tilted upward. The
projection of the particle path in the xy- and zx-planes is shown in figure 6(c, d). The
dashed and bold solid lines in these graphs correspond to the two orbits illustrated
in figure 6(b).

Further simulations for prolate and oblate spheroids of other aspect ratios have
revealed similar behaviour. A data base of particle trajectories and director orbits is
available from the author on request.

This research was supported by a grant provided by the National Science
Foundation.
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